Outline

Motivation
The curse of ill-conditioning

Preconditioning
Preconditioning — Basics
Preconditioned Krylov subspace methods
Preconditioners

Deflation

Summary
How to improve an optimal method?

Solvers I: Krylov subspace methods are all-duty solvers

- “Optimal” methods for any application
- Fast (i.e., short-recurrence) solvers for many applications
- Convergence dependent on conditioning of A, e.g.,
 - Conjugate Gradients

$$\|e^{(k)}\|_A \leq 2 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k \|e^{(0)}\|_A, \quad \kappa = \frac{\lambda_{\text{max}}(A)}{\lambda_{\text{min}}(A)}$$

How to improve convergence of Krylov subspace methods?

1. Preconditioning
2. Deflation
Scaling issues in Numerical Simulations

Numerical simulations of partial differential equations (PDEs)

\[\mathcal{L} \psi = \varphi \]

Discretization of \(\mathcal{L} \) on mesh with spacing \(a \) yields

\[\mathbf{L} \mathbf{x} = \mathbf{f} \]

- Depending on PDE order and order of discretization

\[\kappa(\mathbf{L}) \sim a^{-\sigma}, \quad \sigma \in \mathbb{N}^+ \]

- Increasing accuracy of discretization \((a \to 0)\)

\[\kappa(\mathbf{L}) \to \infty \quad (a \to 0) \]

Performance of Krylov methods deteriorates when \(a \to 0 \)!
Preconditioning — Idea

Idea: Improve conditioning of A in $Ax = b$!

- Instead of solving $Ax = b$ consider solving

 $$S_\ell AS_r y = S_\ell b$$

 $$x = S_r y$$

 with preconditioners S_ℓ, S_r s.t. $\kappa(S_\ell AS_r) \ll \kappa(A)$

Open questions

- What are the design goals for preconditioners?
- What are suitable choices of S_ℓ, S_r?
- How does the preconditioner fit in the iteration

 - Ideally only $A \cdot, S_\ell \cdot$ and $S_r \cdot$ are required

For now consider only left-preconditioning with $S = S_\ell$
Consider extreme cases

- $S = I$
 - $SA = A$ original setting

- $S = A^{-1}$
 - $SA = I$ and $\kappa(SA) = 1$ (ideal)

- $S = A^\dagger$
 - $SA = A^\dagger A$ hermitian, but $\kappa(SA) = \kappa(A)^2$

In order to speed up convergence preconditioner S should

- approximate A^{-1}
- be cheap to compute ($S \cdot$)
Recall: Conjugate Gradients requires A hermitian

Problem: SA in general no longer hpd even if S is hpd, but then

$$\langle SAx, y \rangle_{S^{-1}} = \langle Ax, y \rangle_2 = \langle x, Ay \rangle_2 = \langle x, SAy \rangle_{S^{-1}}$$

Solution: Replace all $\langle ., . \rangle_2$ by $\langle ., . \rangle_{S^{-1}}$

- Rewriting the algorithm one even gets rid of $\langle ., . \rangle_{S^{-1}}$
- CG variants exist for any A hermitian in some $\langle ., . \rangle_B$

Changing the inner product also works when preconditioning other methods which require a special relation between A and its adjoint A^\dagger, e.g., MINRES, SUMR
Motivation
Preconditioning
Deflation
Summary

Preconditioning — Basics
Preconditioned Krylov subspace methods
Preconditioners

PCG — Algorithm

Preconditioned Conjugate Gradients

\[\begin{align*}
 r^{(0)} &= b - Ax^{(0)}, \quad z^{(0)} = Sr^{(0)}, \quad p^{(0)} = z^{(0)} \\
 \text{for } k = 1, 2, \ldots \text{ do} & \\
 \alpha_{k-1} &= \frac{\langle r^{(k-1)}, z^{(k-1)} \rangle_2}{\langle Ap^{(k-1)}, p^{(k-1)} \rangle_2} \\
 x^{(k)} &= x^{(k-1)} + \alpha_{k-1} p^{(k-1)} \\
 r^{(k)} &= r^{(k-1)} - \alpha_{k-1} Ap^{(k-1)} \\
 z^{(k)} &= Sr^{(k)} \\
 \beta_{k-1} &= \frac{\langle r^{(k)}, z^{(k)} \rangle_2}{\langle r^{(k-1)}, z^{(k-1)} \rangle_2} \\
 p^{(k)} &= z^{(k)} + \beta_{k-1} p^{(k-1)} \\
 \text{end for}
\]
Preconditioned GMRES(m)

while not converged do
 $r^{(0)} = S(b - Ax^{(0)})$, $\beta = \|r^{(0)}\|_2$, $v_1 = \beta^{-1}r^{(0)}$
 for $j = 1, \ldots, m$ do
 $w = SAv_j$
 for $i = 1, \ldots, j$ do
 $h_{i,j} = \langle w, v_j \rangle_2$
 $w = w - h_{i,j}v_j$
 end for
 $h_{j+1,j} = \|w\|_2$
 $v_{j+1} = h_{j+1,j}^{-1}w$
 end for
 Define $V_m = [v_1 | \ldots | v_m]$, $H_{m+1,m} = \{h_{i,j}\}_{1 \leq j \leq m, 1 \leq i \leq j+1}$
 Solve $y_m = \text{argmin}_y \|\beta e_1 - H_{m+1,m}y\|_2$
 $x^{(0)} = x^{(0)} + V_m y_m$
end while
Preconditioned BiCGstab

\[r^{(0)} = b, \beta_0 = 0 \]
\[\hat{r} = r \]

\textbf{for } k = 0, 1, \ldots \textbf{ do}

\[\rho_k = \langle r^{(k)}, \hat{r} \rangle_2 \]
\[\beta_k = \frac{\rho_k}{\rho_{k-1}} \cdot \frac{\alpha_{k-1}}{\omega_{k-1}} \]
\[p^{(k)} = r^{(k)} + \beta_k \left(p^{k-1} - \omega_{k-1} v^{(k-1)} \right) \]
\[\hat{p}^{(k)} = S p^{(k)} \]
\[\alpha_k = \frac{\rho_k}{\langle A \hat{p}^{(k)}, \hat{r} \rangle_2} \]
\[x^{(k+\frac{1}{2})} = x^{(k)} + \alpha_k \hat{p}^{(k)} \]
\[s^{(k)} = r^{(k)} - \alpha_k A \hat{p}^{(k)} \]
\[\hat{s}^{(k)} = S s^{(k)} \]
\[\omega_k = \frac{\langle s^{(k)}, A \hat{s}^{(k)} \rangle_2}{\langle A \hat{s}^{(k)}, A \hat{s}^{(k)} \rangle_2} \]
\[x^{(k+1)} = x^{(k+\frac{1}{2})} + \omega_k \hat{s}^{(k)} \]
\[r^{(k+1)} = s^{(k)} - \omega_k A \hat{s}^{(k)} \]

\textbf{end for}
Preconditioners

Aims for the construction of preconditioners S

1. $S \approx A^{-1}$ to get speed-up
2. $S \cdot$ should be cheap (1 application per iterate)

Classes of preconditioners to be discussed

- Structural preconditioners
- Splitting-based preconditioners
- Domain decomposition preconditioners
- Multigrid preconditioners
- Incomplete decomposition preconditioners
Odd-even preconditioning

Discretizations on lattices with next neighbor coupling

Ordering by odd-even

\[A = \begin{bmatrix} A_{oo} & A_{oe} \\ A_{eo} & A_{ee} \end{bmatrix} \]

with diagonal \(A_{oo} \) and \(A_{ee} \)

- \(A_{oo}^{-1}, A_{ee}^{-1} \) trivial
- odd decoupled
- even decoupled

Solve first even then odd

- Nodes are odd or even
Odd-even preconditioning

With $\hat{A}_{ee} = A_{ee} - A_{eo}A_{oo}^{-1}A_{oe}$ solution of $Ax = b$ given by

Odd-Even Reduction

\begin{align*}
y_o &= A_{oo}^{-1}b_o \\
\text{Solve } \hat{A}_{ee}x_e &= b_e - A_{eo}y_o \\
x_o &= y_o - A_{oo}^{-1}A_{oe}x_e
\end{align*}

- Iteratively solving $\hat{A}_{ee}x_e = b_e - A_{eo}y_o$
 \Rightarrow \text{ Odd-Even preconditioner}
- If A has constant diagonal $\kappa(\hat{A}_{ee}) < \kappa(A)$
 \Rightarrow \text{ Solving } \hat{A}_{ee} \text{ is easier than solving } A
- Since A_{oo}^{-1} is cheap (diagonal!)
 \Rightarrow \text{ Cost for } \hat{A}_{ee} \cdot \approx \text{ Cost for } A \cdot
Splitting methods

Splitting methods use the additive decomposition of A

$$A = L + D + U$$

- Jacobi: $x^{(k+1)} = x^{(k)} + D^{-1}r^{(k)}$
- Gauss-Seidel: $x^{(k+1)} = x^{(k)} + (D + L)^{-1}r^{(k)}$
- SOR: $x^{(k+1)} = x^{(k)} + \left(\frac{1}{\omega}D + L\right)^{-1}r^{(k)}$

General splitting method: $A = M + N$

$$x^{(k+1)} = x^{(k)} + M^{-1}r^{(k)} \implies e^{(k+1)} = e^{(k)} - M^{-1}Ae^{(k)}$$

Convergent iff $\|I - M^{-1}A\| < 1$ for some norm $\| \cdot \|$

$\|I - M^{-1}A\|$ small $\Rightarrow M^{-1}A \approx I \Rightarrow M^{-1}$ preconditioner
Domain Decomposition*

- Split the computational domain into subdomains B_i
- Solve system iteratively on each subdomain

```
  B_1   B_2  B_3   B_4
  ▶  Canonical injection $I_j$

  $I_j e_i = e (B_j)_i$

  ▶  Restriction of $x$ onto $B_j$

  $x_{B_j} = I_j^\dagger x$

  ▶  Restriction of $A$ onto $B_j$

  $A_{B_j} = I_j^\dagger A I_j$
```

*Domain decomposition dates back to H. Schwarz (1870)
Additive and Multiplicativ Schwarz

Additive Schwarz

```latex
\begin{align*}
\text{for } k &= 0, 1, \ldots \text{ do} \\
&\quad r^{(k)} = b - Ax^{(k)} \\
&\quad \text{for } j = 1, 2, \ldots, n_B \text{ do} \\
&\quad\quad x^{(k+1)}_{B_j} = x^{(k)}_{B_j} + A^{-1}_{B_j} r^{(k)}_{B_j} \\
&\quad \text{end for} \\
&\text{end for}
\end{align*}
```

- Block-Jacobi
- Embarrassingly parallel

Multiplicativ Schwarz

```latex
\begin{align*}
\text{for } k &= 0, 1, \ldots \text{ do} \\
&\quad r = b - Ax \\
&\quad \text{for } j = 1, 2, \ldots, n_B \text{ do} \\
&\quad\quad r_{B_j} = b - A x_{B_j} \\
&\quad\quad x_{B_j} = x_{B_j} + A^{-1}_{B_j} r_{B_j} \\
&\quad \text{end for} \\
&\text{end for}
\end{align*}
```

- Block-Gauss-Seidel
- Sequential (→ coloring)

Schwarz methods in general
- Data parallel
- Computation parallel
Multigrid

Smooth

Finest Grid

The Multigrid V-cycle

Restriction

Fewer Dofs

First Coarse Grid

Prolongation
(Algebraic) Multigrid

Given:
- \(Ax = b\)
- Iterative method \(S\) ("smoother")

Wanted:
- Hierarchy of systems
 \[A_\ell x_\ell = b_\ell, \quad \ell = 0, \ldots, L\]
- Intergrid transfer operators
 \[P_{\ell+1}^\ell : \mathbb{C}^{n_{\ell+1}} \rightarrow \mathbb{C}^{n_\ell}\]
 \[R_{\ell+1}^\ell : \mathbb{C}^{n_\ell} \rightarrow \mathbb{C}^{n_{\ell+1}}\]

Smøother

\[S_\ell : \mathbb{C}^{n_\ell} \rightarrow \mathbb{C}^{n_\ell}\]

"High modes"

Interpolation

\[P_{\ell+1}^\ell : \mathbb{C}^{n_{\ell+1}} \rightarrow \mathbb{C}^{n_\ell}\]

"Low modes"

Complementarity of Smøother and Interpolation
Generic Multigrid Algorithm — \(\text{MG}_\ell(A_\ell, b_\ell) \)

```
if \( \ell = L \) then
  \( x_L = A_L^{-1} b_L \)
else
  \( x_\ell = 0 \)
  for \( i = 1, \ldots, \nu_1 \) do
    \( x_\ell = S_\ell(x_\ell, b_\ell) \)  
      \( (x_\ell \leftarrow x_\ell + M_\ell^{-1} r_\ell, r_\ell = b_\ell - A_\ell x_\ell) \)  
      "Pre-smoothing"
  end for
  \( x_{\ell+1} = \text{MG}(A_{\ell+1}, R_{\ell+1}^\ell(b_\ell - A x_\ell)) \)
  \( x_\ell = x_\ell + P_{\ell+1}^\ell x_{\ell+1} \)
  for \( i = 1, \ldots, \nu_2 \) do
    \( x_\ell = S_\ell(x_\ell, b_\ell) \)
  end for
end if
```
Optimality of Multigrid

For certain classes of discretizations of certain types of PDEs and appropriate variants of **multigrid** we have

- Multigrid can be used as a **stand alone** solver (no wrapping as a preconditioner into a Krylov subspace method)

- no. of iterations for given accuracy **independent** of no. of variables.

 “optimal method”

Even when not optimal as a stand alone solver, multigrid is often a very efficient preconditioner.
To be efficient, **domain decomposition** needs an additional small system A_C which couples the boundaries of the domains.

For certain classes of discretizations of certain types of PDEs and appropriate variants of **domain decomposition** we have

- Domain decomp. can be used as a **stand alone** solver
- no. of iterations for given accuracy $\propto \log(H/h)$
Incomplete LU (ILU)

Recall: Direct methods are based on factorization of A

\[
A = L \cdot U
\]

Drawback: Fill-In in L and U for sparse A

Idea: Incomplete factorizations with sparse L and U

1. Prescribe the non-zero pattern (e.g., non-zeroes of A)
 - Minimize the error-matrix E in $A = \tilde{L} \tilde{U} + E$
2. Use drop-tolerance θ to drop small entries in L and U
 - Often: $(A^{-1})_{i,j} \sim \alpha^{\text{dist}_G(i,j)}, \quad \alpha < 1$
 \[\Rightarrow\] If i is “far” from j, L_{ij} and U_{ij} will be dropped

ILU is a black-box preconditioner
Flexible Krylov subspace methods

The preconditioner may be an iterative process by itself

- choice 1: fixed no. of iterations or stopping criterion?
- choice 2: stationary or non-stationary iteration
- For red choices: $S \cdot$ changes in each iteration $\rightarrow S = S_k$
- There is no longer a Krylov subspace defined by

$$K_k(SA, b) = \{b, SAb, (SA)^2b, \ldots, (SA)^{k-1}b\}$$

\Rightarrow Convergence theory does not hold anymore

- Algorithmic realizations have to be modified!
 \Rightarrow Flexible Krylov subspace methods
Flexible CG — Algorithm

Flexible Conjugate Gradients

\[r^{(0)} = b - Ax^{(0)}, \quad z^{(0)} = S_0 r^{(0)}, \quad p^{(0)} = z^{(0)} \]

\[\text{for } k = 1, 2, \ldots \text{ do} \]

\[\alpha_{k-1} = \frac{\langle r^{(k-1)}, z^{(k-1)} \rangle}{\langle Ap^{(k-1)}, p^{(k-1)} \rangle} \]

\[x^{(k)} = x^{(k-1)} + \alpha_{k-1} p^{(k-1)} \]

\[r^{(k)} = r^{(k-1)} - \alpha_{k-1} A p^{(k-1)} \]

\[z^{(k)} = S_k r^{(k)} \]

\[\beta_{k-1} = \frac{\langle r^{(k)} - r^{(k-1)}, z^{(k)} \rangle}{\langle r^{(k-1)}, z^{(k-1)} \rangle} \]

\[p^{(k)} = z^{(k)} + \beta_{k-1} p^{(k-1)} \]

\[\text{end for} \]

- If \(S_k = S \) for all \(k \) \(\implies \) \(z^{(k)} \perp r^{(k-1)} \)

- Flexible CG preserves local optimality
Flexible GMRES(m)

\[
\textbf{while not converged do}
\]
\[r^{(0)} = b - Ax^{(0)}, \quad \beta = \|r^{(0)}\|_2, \quad v_1 = \beta^{-1} r^{(0)}\]
\[\textbf{for } j = 1, \ldots, m \textbf{ do}
\]
\[z_j = S_j v_j\]
\[w = Az_j\]
\[\textbf{for } i = 1, \ldots, j \textbf{ do}
\]
\[h_{i,j} = \langle w, v_j \rangle_2\]
\[w = w - h_{i,j} v_j\]
\[\textbf{end for}\]
\[h_{j+1,j} = \|w\|_2\]
\[v_{j+1} = h_{j+1,j}^{-1} w\]
\[\textbf{end for}\]
\[\text{Define } Z_m = [z_1 \mid \ldots \mid z_m], \quad H_{m+1,m} = \{h_{i,j}\}_{1 \leq j \leq m, 1 \leq i \leq j+1}\]
\[\text{Solve } y_m = \arg\min_y \|\beta e_1 - H_{m+1,m} y\|_2\]
\[x^{(0)} = x^{(0)} + Z_m y_m\]
\[\textbf{end while}\]
Preconditioners — Summary

Preconditioning **improves convergence** if $\kappa(SA) \ll \kappa(A)$

- There is a wide variety of preconditioners available
 - Most of them require knowledge about A or its origins
- Goals when constructing preconditioners S are
 - $S \approx A^{-1}$ and S· cheap

Preconditioning makes Krylov subspace methods **more robust**

- Reducing $\kappa(A)$ helps controlling the error $e^{(k)}$, since
 $$\|e\|_2 \leq c\kappa(A)\|r\|_2$$

 \Rightarrow If $\kappa(A) \gg 1$ results based on $\|r\|_2$ should not be trusted!
 \Rightarrow If $\kappa(A) \gg 1$ a preconditioner is **mandatory**!
Deflation — Idea (A hermitian and positive definite)

Assume A hermitian and positive definite
Then convergence is slowed down by small eigenmodes

- Given the “troublesome” modes v_1, \ldots, v_ℓ

 \Rightarrow deflate the subspace $V = \text{colspan}([v_1 | \ldots | v_\ell])$

Similar to preconditioning, instead of $Ax = b$ solve

$$A (I - \pi_A(V)) \hat{x} = (I - \pi_A(V)) b$$
$$x = \hat{x} + V (V^\dagger AV)^{-1} V^\dagger b$$

with $\pi_A(V) = V (V^\dagger AV)^{-1} V^\dagger A$

- In case v_i are eigenmodes, $V^\dagger AV = \text{diag}(\lambda_1, \ldots, \lambda_\ell)$

 $\Rightarrow (V^\dagger AV)^{-1}$ nothing to worry about
Deflation — Conjugate Gradients Theory

The effective condition number κ_{eff} replaces κ in theory

$$\kappa_{\text{eff}} = \frac{\mu_1}{\mu_\ell}$$

$$\mu_1 = \max_{x \neq 0} \frac{\langle A(I - \pi_A(V))x, x \rangle_2}{\langle x, x \rangle_2}$$

$$\mu_\ell = \min_{x \in V^\perp \setminus \{0\}} \frac{\langle A(I - \pi_A(V))x, x \rangle_2}{\langle x, x \rangle_2}$$

- If v_i are smallest ℓ eigenmodes

$$\kappa_{\text{eff}} = \frac{\lambda_{\text{max}}}{\lambda_{\ell+1}}$$

where $\lambda_{\ell+1}$ is the $(\ell + 1)^{st}$ smallest eigenvalue
Deflated CG — Algorithm

Deflated CG
(Deflation space $\mathcal{V} = \text{colspan}(V)$)

\[
\begin{align*}
x^{(0)} &= x^{(0)} + \pi_A(V)b \\
r^{(0)} &= b - Ax^{(0)} \\
p^{(0)} &= (I - \pi_A(V))r^{(0)} \\
\text{for } k = 1, 2, \ldots & \text{ do} \\
\alpha_{k-1} &= \frac{\langle r^{(k-1)}, r^{(k-1)} \rangle}{\langle Ap^{(k-1)}, p^{(k-1)} \rangle} \\
x^{(k)} &= x^{(k-1)} + \alpha_{k-1}p^{(k-1)} \\
r^{(k)} &= r^{(k-1)} - \alpha_{k-1}Ap^{(k-1)} \\
\beta_{k-1} &= \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k-1)}, r^{(k-1)} \rangle} \\
p^{(k)} &= (I - \pi_A(V))r^{(k)} + \beta_{k-1}p^{(k-1)} \\
\text{end for}
\]
GMRES(m)

On restart all information about $\mathcal{K}_m(A, r^{(0)})$ is lost!

- Use deflation technique to transfer information

Note: Due to the Arnoldi relation $V_m^* A V_m = H_{m,m}$ we have

- Eigenmodes w_1, \ldots, w_m of $H_{m,m}$ give approximations $V_m w_1, \ldots, V_m w_m$ for eigenmodes of A

\[H_{mm} w_i = \lambda_i w_i \implies V_m^* (A V_m w_i - \lambda_i V_m w_i) = 0 \]

- Vectors $V_m w_i$ are called Ritz vectors (→ ARPACK)

Idea: Use smallest eigenmodes of $H_{m,m}$ in deflation
Deflated GMRES(m) — Sketch

\(\tilde{V} = \emptyset\)

\textbf{for} \(\ell = 0, 1, \ldots\) \textbf{do}

\(r^{(0)} = b - Ax^{(0)}\), \(\beta = \|r^{(0)}\|_2\), \(v_1 = \beta^{-1}r^{(0)}\)

Compute \(V_m, H_{m+1,m}\) based on initial \(\tilde{V}\) (Arnoldi)

Compute smallest Ritz vectors \(V_m w_1, \ldots, V_m w_\ell\)

\(y_m = \arg\min_y \|\beta e_1 - H_{m+1,m} y\|_2\)

\(x^{(0)} = x^{(0)} + V_m y_m\)

\(\tilde{V} = [V_m w_1 \mid \ldots \mid V_m w_\ell]\)

\textbf{end for}

- For a more detailed description see [4]
- Reusing information upon restart is also known as…
 - …recycling
 - …augmenting
Deflation — Summary

Deflation “hides” most difficult part of the problem

- Computation of eigenmodes necessary
 - possibly on-the-fly (Deflated GMRES(m))
 - possibly a priori knowledge available
 - approximations viable (→ ARPACK)
- Analysis of general deflation subspaces \mathcal{V} (cf. [3])

Eigenmode deflation suffers from scaling (i.e., $a \to 0$)

- In order to have constant number of iterations for $a \to 0$
 \[\kappa_{\text{eff}} = \text{const} \iff \lambda_{\text{min}}^{\text{eff}} > \sigma \]
- Often number N_σ of eigenvalues below threshold σ fulfills
 \[N_\sigma \sim \text{system size } n \to \infty \quad (a \to 0) \]
 \[\Rightarrow \quad \text{More eigenmodes need to be computed as } a \to 0 \]
Summary

To find an efficient solver is hard, but there are guidelines

- Use as much information about your system as possible
 - In the choice of the Krylov subspace method
 - Short recurrence method available?
 - Optimal method available?
 - In the choice of the preconditioner
- Adjust parameters of your method w.r.t. hardware, e.g.,
 - Restart length in GMRES(m)
 - Dimension of the deflation subspace
 - Dimension of the subdomains in domain decomposition

Most often there is no obvious optimal choice for the solver!

Construction of optimal solvers is ongoing research!
Aggregation-based multilevel methods for lattice QCD.
arXiv:1202.2462 [hep-lat], 2012

A. Greenbaum.

K. Kahl and H. Rittich.
Analysis of the deflated conjugate gradient method based on symmetric multigrid theory.

R. Morgan.
Gmres with deflated restarting.

R. A. Nicolaides.
Deflation of conjugate gradients with applications to boundary value problems.
Y. Notay.
Flexible conjugate gradients.

U. Trottenberg, C. Oosterlee, and A. Schüller.
Multigrid.

Y. Saad.
Iterative Methods for Sparse Linear Systems.

B. Smith, P. Bjørstad, and W. Gropp.